

Welcome to turbo_seti’s documentation!

Contents:

	De-Doppler Search
	turboSETI Command Main Program

	Find Doppler

	Data Handler

	File Writers

	Kernels

	Helper Functions

	Merge DAT and LOG Files

	De-Doppler Analysis
	Authors

	plotSETI Command Main Program

	Find Event Pipeline

	Find Event

	Plot DAT

	Plot Event Pipeline

	Plot Event

Indices and tables

	Index

	Module Index

	Search Page

De-Doppler Search

turboSETI Command Main Program

Main program module for executable turboSETI

	
turbo_seti.find_doppler.seti_event.exec_proc(args)

	Interface to FindDoppler class, called by main().

	Parameters

	args (dict) –

	
turbo_seti.find_doppler.seti_event.main(args=None)

	This is the entry-point to turboSETI.

	Parameters

	args (dict) –

Find Doppler

turbo_seti doppler search module

This module is deeply dependent on classes and functions in data_handler.py.

Main class: FindDoppler

	Independent functions:

	search_coarse_channel - for a given coarse channel, doppler search.
load_the_data - loads everything needed by search_coarse_channel.
populate_tree - populate “tree_findoppler” used by several functions.
hitsearch - Searches for hits at given drift rate.
tophitsearch - Searches for hits with largest SNR within 2*tsteps fine frequency channels.

	
class turbo_seti.find_doppler.find_doppler.FindDoppler(datafile, max_drift=10.0, min_drift=1e-05, snr=25.0, out_dir='./', coarse_chans=None, obs_info=None, flagging=False, n_coarse_chan=None, kernels=None, gpu_backend=False, gpu_id=0, precision=1, append_output=False, log_level_int=20, blank_dc=True)

	Initializes FindDoppler object.

	Parameters

	
	datafile (string) – Input filename (.h5 or .fil)

	max_drift (float) – Maximum drift rate in Hz/second.

	min_drift (float) – Minimum drift rate in Hz/second.

	snr (float) – Minimum Signal to Noise Ratio (SNR) - A ratio bigger than 1 to 1 has more signal than noise.

	out_dir (string) – Directory where output files should be placed. By default this is the
current working directory.

	coarse_chans (list(int)) – The input comma-separated list of coarse channels to analyze, if any. By default,
all coarse channels will be searched. Use this to search only specified channels,
e.g. [7,12] will search channels 7 and 12 only.

	obs_info (dict) – Used to hold information found on file, including info about pulsars, RFI, and SEFD.

	flagging (bool) – Flags the edges of the PFF for BL data (with 3Hz res per channel)? (True/False)
Anybody - please improve this cryptic description.

	n_coarse_chan (int) – Number of coarse channels in the file.
If None (default), blimpy will make this determination (undesirable, in general).

	kernels (Kernels, optional) – Pre-configured class of Kernels.

	gpu_backend (bool, optional) – Use GPU accelerated Kernels? (True/False)

	gpu_id (int) – If gpu_backend=True, then this is the GPU device to use.
Default is 0.

	precision (int {2: float64, 1: float32}, optional) – Floating point precision for the GPU.
The default is 1 (recommended).

	append_output (bool, optional) – Append output DAT & LOG files? (True/False)
Default is False.
DEPRECATED.

	log_level_int (int, optional) – Python logging threshold level (INFO, DEBUG, or WARNING)
Default is logging.INFO.

	blank_dc (bool, optional) – Remove the DC spike? (True/False)
Default is True (recommended).

	
last_logwriter(arg_path, arg_text)

	Write the last LogWriter entry

	Parameters

	
	arg_path (str) – Path of log for the final log entries.

	arg_text (str) – Text message to include at end of the log file.

	Returns

	

	Return type

	None.

	
search(n_partitions=1, progress_bar='n')

	Top level search routine.

	Parameters

	
	n_partitions (int) – Number of Dask partitions (processes) to use in parallel. Defaults to single-partition (process).

	progress_bar (str {'y', 'n'}, optional) – Enable command-line progress bar.

	Returns

	

	Return type

	None.

Notes

	self.data_handle.cchan_listthe list of coarse channel objects for searching,

	created by self.data_handle = DATAHandle() during __init__() execution.

If using dask (n_partitions > 1):
* Launch multiple drift searches in parallel.
* Each search works on a single coarse channel object.
* n_partitions governs the maximum number of partitions to run in parallel.
Else, the searches are done in sequence of the coarse channel objects.

It is not recommended to mix dask partitions with GPU mode as this could cause GPU queuing.

	
turbo_seti.find_doppler.find_doppler.hitsearch(fd, spectrum, specstart, specend, snr_thresh, drift_rate, header, tdwidth, max_val, the_median, the_stddev)

	Searches for hits that exceed the given SNR threshold.

Note that the “max” arrays share the index values as any given spectrum.
They represent maximums with respect to the frequency columns in the range (0, FFT length).

Let S be the subspectrum given by spectrum[specstart:specend].
Set hit-counter to 0.
For each element of S,

	Subtract the given median and divide that result by the given standard deviation,

	giving the new element value.

	if the element value > snr_thresh then

	Increment hit-counter
If element value > current max SNR using the common index then

Set the current max SNR at the common index = this element.
Set the current max drift rate at the common index = drift rate of this element.

Increment the grand total of hits by the hit-counter.

	Parameters

	
	fd (FindDoppler) – Instance of FindDoppler class.

	spectrum (ndarray) – Array of data values along the frequency axis of length = FFT length.

	specstart (int) – First index to search for hit in spectrum.

	specend (int) – Last index to search for hit in spectrum.

	snr_thresh (float) – Minimum signal to noise ratio for candidacy.

	drift_rate (float) – Drift rate at which we are searching for hits.

	header (dict) – Header in fits header format. See data_handler.py’s DATAH5 class header.

	tdwidth (int) – FFT Length = # fine channels / # coarse channels.

	max_val (max_vals) – Object to be filled with max values from this search and then returned.
Length of each subarray = FFT length.

	
turbo_seti.find_doppler.find_doppler.load_the_data(cchan_dict, precision)

	Load the DATAH5 object, spectra matrix, and the associated drift indexes.

	Parameters

	
	cchan_dict (dict) – A single coarse channel object created by data_handler.py DATAHandle __split_h5.

	precision (int {2: float64, 1: float32}) – Floating point precision for the GPU.

	Returns

	
	datah5_obj (DATAH5 object (complex!))

	spectra (numpy.ndarray) – Spectra data array. Set by the data_handler.py load_data function.

	drift_indexes (numpy.ndarray) – Drift index matrix. Set by the data_handler.py load_data function.

	
class turbo_seti.find_doppler.find_doppler.max_vals

	Class used to initialize some maximums.

	
turbo_seti.find_doppler.find_doppler.populate_tree(fd, spectra, tree_findoppler, nframes, tdwidth, tsteps, fftlen, shoulder_size, roll=0, reverse=0)

	This script populates the findoppler tree with the spectra.

	Parameters

	
	fd (FindDoppler object) – Instance of FindDoppler class.

	spectra (ndarray) – Spectra matrix.

	tree_findoppler (ndarray) – Tree to be populated with spectra.

	nframes (int) –

	tdwidth (int) –

	tsteps (int) –

	fftlen (int) – Length of fast fourier transform (fft) matrix.

	shoulder_size (int) – Size of shoulder region.

	roll (int, optional) – Used to calculate amount each entry to the spectra should be rolled (shifted).

	reverse (int, optional) – Used to determine which way spectra should be rolled (shifted).

	Returns

	Spectra-populated version of the input tree_findoppler.

	Return type

	ndarray

Notes

It creates two “shoulders” (each region of tsteps*(shoulder_size/2) in size) to avoid “edge” issues.
It uses np.roll() for drift-rate blocks higher than 1.

	
turbo_seti.find_doppler.find_doppler.search_coarse_channel(cchan_dict, fd, dataloader=None, logwriter=None, filewriter=None)

	Run a turboseti search on a single coarse channel.

	Parameters

	
	cchan_dict (dict) – A single coarse channel object created by data_handler.py DATAHandle __split_h5.
Contains the following fields:
* filename : file path (common to all objects)
* f_start : start frequency of coarse channel
* f_stop : stop frequency of coarse channel
* cchan_id : coarse channel number
* n_coarse_chan : total number of coarse channels (common to all objects)

	fd (FindDoppler object) – Instance of the FindDoppler class.

	logwriter (LogWriter, optional) – A LogWriter to write log output into. If None, one will be created.

	filewriter (FileWriter, optional) – A FileWriter to use to write the dat file. If None, one will be created.

	Returns

	Returns True if no exceptions occur (needed for dask).

	Return type

	bool

Notes

This function is separate from the FindDoppler class to allow parallelization.
This should not be called directly, but rather via the FindDoppler.search() routine.
One exception: turboseti_search package.

	
turbo_seti.find_doppler.find_doppler.tophitsearch(fd, tree_findoppler_original, max_val, tsteps, header, tdwidth, fftlen, max_drift, drift_rate_resolution, logwriter=None, filewriter=None, obs_info=None)

	This finds the hits with largest SNR within a nearby window of frequency channels.
The window size is calculated so that we cannot report multiple overlapping hits.

	Parameters

	
	tree_findoppler_original (ndarray) – Spectra-populated findoppler tree

	max_val (max_vals) – Contains max values from hitsearch

	tsteps (int) –

	header (dict) – Header in fits header format. Used to report tophit in filewriter.
See DATAH5

	tdwidth (int) –

	fftlen (int) – Length of fast fourier transform (fft) matrix

	max_drift (float) – Maximum drift rate in Hz/second

	drift_rate_resolution (float) – The drift rate corresponding to drifting rightwards one bin in the whole observation

	logwriter (LogWriter, optional) – Logwriter to which we should write if we find a top hit.

	filewriter (FileWriter, optional) – Filewriter corresponding to file to which we should save the local maximum of tophit.
See report_tophit()

	obs_info (dict, optional) –

	Returns

	Same filewriter that was input.

	Return type

	FileWriter

Data Handler

Filterbank data handler for the find_doppler.py functions.

	
class turbo_seti.find_doppler.data_handler.DATAH5(filename, f_start=None, f_stop=None, t_start=None, t_stop=None, cchan_id=0, n_coarse_chan=None, kernels=None, gpu_backend=False, precision=1, gpu_id=0)

	This class is where the waterfall data is loaded, as well as the DATAH5 header info.
Don’t be surprised at the use of FITS header names! [?]
It creates other attributes related to the dedoppler search (load_drift_indexes).

	Parameters

	
	filename (string) – Name of file.

	f_start (float) – Start frequency in MHz.

	f_stop (float) – Stop frequency in MHz.

	t_start (int) – Start integration ID.

	t_stop (int) – Stop integration ID.

	coarse_chan (int) – Coarse channel ID.

	n_coarse_chan (int) – Total number of coarse channels.

	kernels (Kernels) – Pre-configured class of kernels.

	
close()

	Closes file and sets the data attribute .closed to
True. A closed object can no longer be used for I/O operations.
close() may be called multiple times without error.

	
load_data()

	Read the spectra and drift indices from file.

	Returns

	spectra, drift indices

	Return type

	ndarray, ndarray

	
load_drift_indexes()

	The drift indices are read from a stored file so that
there is no need to recalculate. This speed things up.

	Returns

	drift_indexes

	Return type

	ndarray

	
class turbo_seti.find_doppler.data_handler.DATAHandle(filename=None, out_dir='./', n_coarse_chan=None, coarse_chans=None, kernels=None, gpu_backend=False, precision=1, gpu_id=0)

	Class to setup input file for further processing of data.
Handles conversion to h5 (from fil), extraction of
coarse channel info, waterfall info, and file size checking.

	Parameters

	
	filename (str) – Name of file (.h5 or .fil).

	out_dir (str) – Directory where output files should be saved.

	n_coarse_chan (int) – Number of coarse channels.

	coarse_chans (list or None) – List of course channels.

	kernels (Kernels, optional) – Pre-configured class of Kernels.

	gpu_backend (bool, optional) – Use GPU accelerated Kernels?

	precision (int {2: float64, 1: float32}, optional) – Floating point precision. Default: 1.

	gpu_id (int) – If gpu_backend=True, then this is the device ID to use.

	
get_info()

	Get the header of the file.

	Returns

	header – Header of the blimpy file.

	Return type

	dict

File Writers

	
class turbo_seti.find_doppler.file_writers.FileWriter(filename, header)

	Used to write information to turboSETI output files.

Initializes FileWriter object and writes its header.

	Parameters

	
	filename (str) – Name of file on which we would like to perform operations.

	header (dict) – Information to be written to header of file filename.

	
report_header(header)

	Write header information per given obs.

	Parameters

	header (dict) – Information to be written to file header.

	
report_tophit(max_val, ind, ind_tuple, tdwidth, fftlen, header, total_n_candi, obs_info=None)

	This function looks into the top hit in a region, basically finds the local maximum and saves that.

	Parameters

	
	max_val (findopp) –

	ind (int) – Index at which top hit is located in max_val’s maxdrift and maxsnr.

	ind_tuple (tuple(int, int) (lbound, ubound)) –

	tdwidth (int) –

	fftlen (int) – Length of the fast fourier transform matrix.

	header (dict) – Contains info on coarse channel to be written to file.

	total_n_candi (int) –

	obs_info (dict, optional) – Used to hold info found on file, including info about pulsars, RFI, and SEFD.

	Returns

	

	Return type

	FileWriter object that called this function.

	
class turbo_seti.find_doppler.file_writers.GeneralWriter(filename='', mode='a')

	Wrapper class for file operations.

Initializes GeneralWriter object. Opens given file with given mode, sets new object’s filehandle to the file
object, sets the new object’s filename to the file’s name, then closes the file.

	Parameters

	
	filename (str) – Name of file on which we would like to perform operations.

	mode (str {'a', 'r', 'w', 'x'}, optional) – Mode which we want to use to open file, same modes as the built-in python
built-in open function: read (r), append (a), write (w), or create (x).

	
close()

	Closes file object if it is open.

	
is_open()

	Checks if file is open.

	Returns

	True if file is open, False otherwise.

	Return type

	boolean

	
open(mode='a')

	Opens the file with the inputted mode, then closes it. Does not actually leave the file opened, only used for
changing mode.

	Parameters

	mode (str {'a', 'r', 'w', 'x'}, optional) – Mode which we want to assign to this file, same modes as the built-in python
built-in open function: read (r), append (a), write (w), or create (x).

	
writable()

	Checks if file is open, and if it is, checks that mode is either write or append.

	Returns

	True if file is open and writeable, False otherwise.

	Return type

	boolean

	
write(info_str, mode='a')

	Sets file mode to a writeable mode and opens it if it is not already open in a writeable mode, writes info_str
to it, and then closes it. If the file was not previously open when this is called, the file is closed after
writing in order to maintain the state the filewriter was in before.

	Parameters

	
	info_str (str) – Data to be written to file.

	mode (str {'a', 'w'}, optional) – Mode for file. If it is not a writeable mode, it will be set to a writeable mode.

	
class turbo_seti.find_doppler.file_writers.LogWriter(filename='', mode='a')

	Used to write data to log.

Initializes GeneralWriter object. Opens given file with given mode, sets new object’s filehandle to the file
object, sets the new object’s filename to the file’s name, then closes the file.

	Parameters

	
	filename (str) – Name of file on which we would like to perform operations.

	mode (str {'a', 'r', 'w', 'x'}, optional) – Mode which we want to use to open file, same modes as the built-in python
built-in open function: read (r), append (a), write (w), or create (x).

	
info(info_str)

	Writes info_str to file.

	Parameters

	info_str (str) – String to be written to file.

Kernels

Hitsearch

This kernel implements a GPU accelerated version of the hitsearch()
method written as a RAW CUDA kernel.

De-Doppler

This kernel implements a slightly modified version of the Taylor Tree algorithm
published [http://articles.adsabs.harvard.edu/pdf/1974A%26AS...15..367T] by J.H. Taylor in 1974.

	This GPU implementation is based on Cupy [https://cupy.dev/] array library accelerated with CUDA and ROCm.

	This CPU implementation is based on Numba [https://numba.pydata.org/] Just-In-Time compilation.

	
turbo_seti.find_doppler.kernels._taylor_tree._core_numba.flt

	This is a function to Taylor-tree-sum a data stream. It assumes that
the arrangement of data stream is, all points in first spectra, all
points in second spectra, etc. Data are summed across time.

	Parameters

	
	outbuf (array_like) – Input data array, replaced by dedispersed data at the output.

	nchn (int) – Number of timesteps in the data.

References

	
	Ramachandran, 07-Nov-97, nfra. – Original algorithm.

	
	Siemion, 2011 – float/64 bit addressing (C-code)

	
	Chen, 2014 – python version

	
	Enriquez + P.Schellart, 2016 – cython version

	
	Cruz, 2020 – numba version

	
class turbo_seti.find_doppler.kernels.Kernels(gpu_backend=False, precision=2, gpu_id=0)

	Dynamically loads the right modules according to parameters.

	Parameters

	
	gpu_backend (bool, optional) – Enable GPU acceleration.

	precision (int {2: float64, 1: float32}, optional) – Floating point precision.

	
get_spectrum(tt_output, tsteps, tdwidth, drift_index)

	The different Taylor tree kernels have a slightly different output.
Both of them you can think of indexed by [row index][frequency], although it is
reshaped as a 1-dimensional array.
In the GPU version, the row index is the same as the “drift index”. 0 is the least drift,
1 is the next least drift, et cetera.
In the CPU version, the row index is bit-reversed from this.
This method lets the caller get data for a particular drift without knowing
how the rows are ordered.
There’s a good chance that one or both of these is suboptimal; please update this
comment if you change the underlying algorithm.

	
static has_gpu()

	Check if the system has the modules needed for the GPU acceleration.

Note

Modules are listed on requirements_gpu.txt.

	Returns

	has_gpu – True if the system has GPU capabilities.

	Return type

	bool

Helper Functions

	
turbo_seti.find_doppler.helper_functions.FlipX(outbuf, xdim, ydim, xp=None)

	This function takes in an array of values and iteratively flips ydim chunks of values of length xdim.

	Parameters

	
	outbuf (ndarray) – An array with shape like (int, 1)

	xdim (int) – Size of segments to be flipped.

	ydim (int) – Amount of segments of size xdim to be flipped.

	xp (Numpy or Cupy, optional) – Math module to be used. If None, Numpy will be used.

Examples

If you have an array [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and enter it with xdim = 5 and ydim = 2, the array will be
modified to become [5, 4, 3, 2, 1, 10, 9, 8, 7, 6]. Note that if you wish for the whole array to be modified in this
way, xdim * ydim should equal the length of the array. If ydim * xdim is greater than the length of the array, this
function will error.

	
turbo_seti.find_doppler.helper_functions.bitrev(inval, nbits)

	This function bit-reverses the given value “inval” with the number of bits, “nbits”.

	Parameters

	
	inval (int) – Number to be bit-reversed.

	nbits (int) – The length of inval in bits. If user only wants the bit-reverse of a certain amount of bits of
inval, nbits is the amount of bits to be reversed counting from the least significant (rightmost)
bit. Any bits beyond this length will not be reversed and will be truncated from the result.

	Returns

	The bit-reverse of inval. If there are more significant bits beyond nbits, they are truncated.

	Return type

	int

References

	
	Ramachandran, 10-Nov-97, nfra. – Original C implementation.

	
	Chen, 2014 – Python version.

	
	Elkins (texadactyl), 2020 – Speedup.

	
turbo_seti.find_doppler.helper_functions.chan_freq(header, fine_channel, tdwidth, ref_frame)

	Find channel frequency.
Note issue #98.

	Parameters

	
	header –

	fine_channel –

	tdwidth –

	ref_frame –

	Returns

	chanfreq

	Return type

	float

	
turbo_seti.find_doppler.helper_functions.comp_stats(np_arr, xp=None)

	Compute median and stddev of floating point vector array in a fast way, discarding outliers.

	Parameters

	
	np_arr (ndarray) – Floating point vector array.

	xp (Numpy or Cupy, optional) – Math module to be used. If None, Numpy will be used.

	Returns

	the_median, the_stddev – Median and standard deviation of input array with outliers removed.

	Return type

	numpy.float32, numpy.float32

Merge DAT and LOG Files

Source file for merge_dats_logs()

	
turbo_seti.find_doppler.merge_dats_logs.merge_dats_logs(arg_h5: str, arg_dir: str, arg_type: str, cleanup='n')

	Merge multiple DAT (or LOG) files.

	Parameters

	
	arg_h5 (str) – HDF5 file used by search()
to produce the DAT and LOG files.

	arg_dir (str) – Directory holding multiple DAT and LOG files after FindDoppler.search()
which ran with more than 1 partition.

	arg_type (str) – File extension of interest (‘dat’ or ‘log’).

De-Doppler Analysis

	In this code, the following terminology is used:

	
	Hit: Single strong narrowband signal in an observation.

	Event: Strong narrowband signal that is associated with multiple hits
across ON observations.

Note

This code works for .dat files that were produced by seti_event.py
after turboSETI version 0.8.2, and blimpy version 1.1.7 (~mid 2019). The
drift rates before that version were recorded with the incorrect sign
and thus the drift rate sign would need to be flipped in the make_table
function.

Authors

	Version 2.0 - Sofia Sheikh (ssheikhmsa@gmail.com) and Karen Perez (kip2105@columbia.edu)

	Version 1.0 - Emilio Enriquez (jeenriquez@gmail.com)

plotSETI Command Main Program

Main program module for executable plotSETI.
Facilitates the automation of 2 large functions:

find_event_pipline()
plot_event_pipline()

	
turbo_seti.find_event.run_pipelines.clean_event_stuff(path_out_dir)

	Clean up the output directory of old artifacts.

	Parameters

	path_out_dir (str) – Output path of directory holding old artifacts.

	Returns

	

	Return type

	None.

	
turbo_seti.find_event.run_pipelines.count_text_lines(path_list_file)

	Count the list of text lines in a file.

	Parameters

	path_list_file (str) – Path of file containing a list of text lines..

	Returns

	Count of text lines.

	Return type

	int

	
turbo_seti.find_event.run_pipelines.execute_pipelines(args)

	Interface to the pipeline functions, called by main().

	Parameters

	args (dict) –

	
turbo_seti.find_event.run_pipelines.main(args=None)

	This is the entry point to the plotSETI executable.

	Parameters

	args (dict) –

	
turbo_seti.find_event.run_pipelines.make_lists(path_h5_dir, path_h5_list, path_dat_dir, path_dat_list)

	Create a list of .h5 files and a list of .dat files.

	Parameters

	
	path_h5_dir (str) – Directory where the h5 files reside.

	path_h5_list (str) – Path of output list of h5 files.

	path_dat_dir (str) – Directory where the dat files reside.

	path_dat_list (str) – Path of output list of dat files.

	Returns

	Number in cadence : Success.
0 : Failure.

	Return type

	int

Find Event Pipeline

Front-facing script to find drifting, narrowband events in a set of generalized
cadences of ON-OFF radio SETI observations.

The main function contained in this file is find_event_pipeline() calls
find_events from find_events.py to read a list of turboSETI .dat files.
It then finds events within this group of files.

	
class turbo_seti.find_event.find_event_pipeline.PathRecord(path_dat, tstart, source_name, fch1, foff, nchans)

	Definition of a DAT record

	
turbo_seti.find_event.find_event_pipeline.close_enough(x, y)

	Make sure that x and y are close enough to be considered roughly equal.

	
turbo_seti.find_event.find_event_pipeline.find_event_pipeline(dat_file_list_str, h5_file_list_str=None, check_zero_drift=False, filter_threshold=3, on_off_first='ON', number_in_cadence=6, on_source_complex_cadence=False, saving=True, csv_name=None, user_validation=False, sortby_tstart=True, SNR_cut=None, min_drift_rate=None, max_drift_rate=None)

	Find event pipeline.

	Parameters

	
	dat_file_list_str (str) – The string name of a plaintext file ending in .lst
that contains the filenames of .dat files, each on a
new line, that were created with seti_event.py. The
.lst should contain a set of cadences (ON observations
alternating with OFF observations). The cadence can be
of any length, given that the ON source is every other
file. This includes Breakthrough Listen standard ABACAD
as well as OFF first cadences like BACADA. Minimum
cadence length is 2, maximum cadence length is
unspecified (currently tested up to 6).
Example: ABACAD|ABACAD|ABACAD

	h5_file_list_str (str | None) – The string name of a plaintext file ending in .lst
that contains the filenames of .h5 files, each on a
new line, that were created with seti_event.py. The
.lst should contain a set of cadences (ON observations
alternating with OFF observations). The cadence can be
of any length, given that the ON source is every other
file. This includes Breakthrough Listen standard ABACAD
as well as OFF first cadences like BACADA. Minimum
cadence length is 2, maximum cadence length is
unspecified (currently tested up to 6).

	check_zero_drift (bool) – A True/False flag that tells the program whether to
include hits that have a drift rate of 0 Hz/s. Earth-
based RFI tends to have no drift rate, while signals
from the sky are expected to have non-zero drift rates.

	filter_threshold (int, default is 3) – Specification for how strict the hit filtering will be.
There are 3 different levels of filtering, specified by
the integers 1, 2, and 3.
* Filter_threshold = 1 applies the following parameter checks:

check_zero_drift
SNR_cut
min_drift_rate
max_drift_rate

However, Filter_threshold = 1 applies no ON-OFF check.
* Filter_threshold = 2 returns hits that passed level 1
AND that are in at least one ON table but no OFF tables.
* Filter_threshold = 3 returns events that passed level 2
AND that are present in ALL ON tables.

	on_off_first (str {'ON', 'OFF'}) – Tells the code whether the .dat sequence starts with
the ON or the OFF observation. Valid entries are ‘ON’
and ‘OFF’ only. Default is ‘ON’.

	number_in_cadence (int) – The number of files in a single ON-OFF cadence.
Default is 6 for ABACAD.

	on_source_complex_cadence (bool) – If using a complex cadence (i.e. ons and offs not
alternating), this variable should be the string
target name used in the .dat filenames. The code will
then determine which files in your dat_file_list_str
cadence are ons and which are offs.

	saving (bool) – A True/False flag that tells the program whether to
save the output array as a .csv.

	user_validation (bool) – A True/False flag that, when set to True, asks if the
user wishes to continue with their input parameters
(and requires a ‘y’ or ‘n’ typed as confirmation)
before beginning to run the program. Recommended when
first learning the program, not recommended for
automated scripts.

	sortby_tstart (bool) – If True, the input file list is sorted by header.tstart.

	SNR_cut (None (default value) or float value > 0) – If None, then all SNR values from the dedoppler results in the dat
files are accepted as-is.
Otherwise, the specified value is the threshold SNR below which
hits will be discarded.

	min_drift_rate (None (default value) or float value > 0) – If None, then all drift rate values from the dedoppler results in the dat
files are accepted as-is.
Otherwise, the specified value is the threshold drift rate below which
hits will be discarded.

	max_drift_rate (None (default value) or float value > 0) – If None, then all drift rate values from the dedoppler results in the dat
files are accepted as-is.
Otherwise, the specified value is the threshold drift rate above which
hits will be discarded.

	Returns

	
	a Pandas dataframe with all the events that were found.

	None, if no events were found.

	Return type

	Either

Notes

The HDF5 file is ASSUMED(!!) to have the same name as .dat files.

Examples

>>> import find_event_pipeline;
>>> find_event_pipeline.find_event_pipeline(dat_file_list_str,
... SNR_cut=10,
... min_drift_rate=0.1,
... max_drift_rate=4,
... check_zero_drift=False,
... filter_threshold=3,
... on_off_first='ON',
... number_in_cadence=6,
... on_source_complex_cadence=False,
... saving=True,
... user_validation=False)

	
turbo_seti.find_event.find_event_pipeline.get_file_header(filepath_h5)

	Extract and return the target’s source name from the DAT file path.

	Parameters

	dat_path (str) – Full or relative path name of the DAT file

	Returns

	header

	Return type

	Waterfall header object

Find Event

Backend script to find drifting, narrowband events in a generalized cadence of
radio SETI observations (any number of ons, any number of offs, any pattern -
streamlined for alternating on-off sequences).

The main function contained in this file is find_events() uses the other
helper functions in this file (described below) to read a list of turboSETI .dat
files. It then finds events within this group of files.

	
turbo_seti.find_event.find_event.calc_freq_range(hit, delta_t=0.0, max_dr=True, follow=False)

	Calculates a range of frequencies where RFI in an off-source could
be related to a hit in an on-source, given a freq and drift_rate.

	Parameters

	
	hit (dict) –

	delta_t (float, optional) –

	max_dr (bool, optional) –

	follow (bool, optional) –

	Returns

	[low_bound, high_bound]

	Return type

	list

	
turbo_seti.find_event.find_event.end_search(t0)

	Ends the search when there are no candidates left, or when the filter
level matches the user-specified level.

	Parameters

	t0 (time) –

	
turbo_seti.find_event.find_event.find_events(dat_file_list, check_zero_drift=False, filter_threshold=3, on_off_first='ON', complex_cadence=False, SNR_cut=None, min_drift_rate=None, max_drift_rate=None)

	Reads a list of turboSETI .dat files.

	Parameters

	
	dat_file_list (list) – A Python list of .dat files with ON observations of a
single target alternating with OFF observations. This
cadence can be of any length, given that the ON source
is every other file. This includes Breakthrough Listen
standard ABACAD as well as OFF first cadences like
BACADA. Minimum cadence length is 2, maximum cadence
length is unspecified (currently tested up to 6).

	check_zero_drift (bool, optional) – A True/False flag that tells the program whether to
include hits that have a drift rate of 0 Hz/s. Earth-
based RFI tends to have no drift rate, while signals
from the sky are expected to have non-zero drift rates.
Default is False.

	filter_threshold (int, default is 3) – Specification for how strict the hit filtering will be.
There are 3 different levels of filtering, specified by
the integers 1, 2, and 3.
* Filter_threshold = 1 applies the following parameter checks:

check_zero_drift
SNR_cut
min_drift_rate
max_drift_rate

However, Filter_threshold = 1 applies no ON-OFF check.
* Filter_threshold = 2 returns hits that passed level 1
AND that are in at least one ON table but no OFF tables.
* Filter_threshold = 3 returns events that passed level 2
AND that are present in ALL ON tables.

	on_off_first (str {'ON', 'OFF}, optional) – Tells the code whether the .dat sequence starts with
the ON or the OFF observation. Valid entries are ‘ON’
and ‘OFF’ only.

	complex_cadence (bool, optional) – A Python list of 1s and 0s corresponding to which
files in the file_sublist are on-sources and which are
off_sources for complex (i.e. non alternating) cadences.

	SNR_cut (None (default value) or float value > 0) – If None, then all SNR values from the dedoppler results in the dat
files are accepted as-is.
Otherwise, the specified value is the threshold SNR below which
hits will be discarded.

	min_drift_rate (None (default value) or float value > 0) – If None, then all drift rate values from the dedoppler results in the dat
files are accepted as-is.
Otherwise, the specified value is the threshold drift rate below which
hits will be discarded.

	max_drift_rate (None (default value) or float value > 0) – If None, then all drift rate values from the dedoppler results in the dat
files are accepted as-is.
Otherwise, the specified value is the threshold drift rate above which
hits will be discarded.

Examples

It is highly recommended that users interact with this program via the
front-facing find_event_pipeline.py script. See the usage of that file in
its own documentation.

If you would like to run find_events without calling
find_event_pipeline.py, the usage is as follows:

>>> find_event.find_events(file_sublist, SNR_cut=10, check_zero_drift=False,
... filter_threshold=3, on_off_first='ON', complex_cadence=False)

Notes

It calls other functions to find events within this group of files.
Filter_threshold allows the return of a table of events with hits at
different levels of filtering.
Filter_threshold = [1,2,3] means:

	Hits above an SNR cut witout AB check

	Hits that are only in some As and no Bs

	Hits that are only in all As and no Bs

	
turbo_seti.find_event.find_event.follow_event(hit, on_table, get_count=True)

	Follows a given hit to the next observation of the same target and
looks for hits which could be part of the same event.

	Parameters

	
	hit (dict) –

	on_table (dict) –

	get_count (bool) –

	Returns

	new_on_table or count

	Return type

	dict or int

	
turbo_seti.find_event.find_event.not_yet_seen(mylist, argument)

	Search a list to see if argument is already there.

	Parameters

	
	mylist (list) – List of things that have been already seen.

	argument (int) – An integer to add to list if not alreay seen.

	Returns

	True :: Not yet seen so the argument was added.
False :: Already seen.

	Return type

	bool

	
turbo_seti.find_event.find_event.read_dat(filename)

	Read a turboseti .dat file.

	Parameters

	filename (str) – Name of .dat file to open.

	Returns

	df_data – Pandas dataframe of hits.

	Return type

	dict

Plot DAT

	
turbo_seti.find_event.plot_dat.make_plot(dat, fil, f_start, f_stop, t0, candidate=None, check_zero_drift=False, alpha=1, color='black')

	
	Parameters

	
	dat (str) – The .dat file containing information about the hits detected.

	fil (str) – Filterbank or h5 file corresponding to the .dat file.

	f_start (float) – Start frequency, in MHz.

	f_stop (float) – Stop frequency, in MHz.

	t0 (float) – Start time of the candate event in mjd units.

	candidate (dict, optional) – A single row from a pandas dataframe containing
information about one of the candidate signals
detected. Contains information about the candidate
signal to be plotted. The necessary data includes
the start and stop frequencies, the drift rate,
and the source name. The dataframe the candiate
comes from is generated in plot_all_hit_and_candidates
above as candidate_event_dataframe. The default is None.

	check_zero_drift (bool, optional) – A True/False flag that tells the program whether to
include hits that have a drift rate of 0 Hz/s. Earth-
based RFI tends to have no drift rate, while signals
from the sky are expected to have non-zero drift rates.
The default is False.

	alpha (float, optional) – The opacity of the overlayed hit plot. This should
be between 0 and 1, with 0 being invisible, and 1
being the default opacity. This is passed into
matplotlib.pyplot function.

	color (str, optional) – Allows for the specification of the color of the overlayed
hits. The default is ‘black’.

	
turbo_seti.find_event.plot_dat.plot_dat(dat_list_string, fils_list_string, candidate_event_table_string, outdir=None, check_zero_drift=False, alpha=1, color='black', window=None)

	Makes a plot similar to the one produced by
plot_candidate_events, but also includes the hits
detected, in addition to the candidate signal.

Calls plot_hit_candidate and make_plot

	Parameters

	
	dat_list_string (str) – List of .dat files in the cadence.

	fils_list_string (str) – List of filterbank or .h5 files in the cadence.

	candidate_event_table_string (str) – The string name of a .csv file that contains the
list of events at a given filter level, created as
output from find_event_pipeline.py.

	outdir (str, optional) – Path to the directory where the plots will be saved to.
The default is None, which will result in the plots being
saved to the directory where the .dat file are located.

	check_zero_drift (bool, optional) – A True/False flag that tells the program whether to
include hits that have a drift rate of 0 Hz/s. Earth-
based RFI tends to have no drift rate, while signals
from the sky are expected to have non-zero drift rates.
The default is False.

	outdir – Path to the directory where the plots will be saved to.
The default is None, which will result in the plots being
saved to the directory the .dat file are located.

	alpha (float, optional) – The opacity of the overlayed hit plot. This should
be between 0 and 1, with 0 being invisible, and 1
being the default opacity. This is passed into
matplotlib.pyplot function.

	color (str, optional) – Allows for the specification of the color of the overlayed
hits. The default is ‘black’.

	window (tuple, optional) – Sets the start and stop frequencies of the plot, in MHz.
The input takes the form of a tuple: (start, stop). And
assumes that the start is less than the stop. If given, the
resulting plot will range exactly between the start/stop
frequencies. The default is None, which will result in
a plot of the entire range of hits detected.

	
turbo_seti.find_event.plot_dat.plot_hit_candidate(dat_file_list, fil_file_list, source_name_list, all_hits_frame, candidate=None, check_zero_drift=False, outdir=None, alpha=1, color='black', window=None)

	
	Parameters

	
	dat_file_list (list) – A Python list that contains a series of
strings corresponding to the filenames of .dat
files, each on a new line, that corresponds to
the .dat files created when running turboSETI
candidate search on the .h5 or .fil files below

	fil_file_list (list) – A Python list that contains a series of
strings corresponding to the filenames of .dat
files, each on a new line, that corresponds to
the cadence used to create the .csv file used
for event_csv_string.

	source_name_list (list) – A Python list that contains a series of strings
corresponding to the source names of the
cadence in chronological (descending through
the plot pannels) cadence.

	all_hits_frame (dict) – A pandas dataframe contining information about
all the hits detected. The necessary data
includes the start and stop frequencies, the drift
rate, and the source name. This dataframe is
generated in plot_all_hit_and_candidates above.

	candidate (dict, optional) – A single row from a pandas dataframe containing
information about one of the candidate signals
detected. Contains information about the candidate
signal to be plotted. The necessary data includes
the start and stop frequencies, the drift rate,
and the source name. The dataframe the candiate
comes from is generated in plot_all_hit_and_candidates
above as candidate_event_dataframe. The default is None.

	check_zero_drift (bool, optional) – A True/False flag that tells the program whether to
include hits that have a drift rate of 0 Hz/s. Earth-
based RFI tends to have no drift rate, while signals
from the sky are expected to have non-zero drift rates.
The default is False.

	outdir (str, optional) – Path to the directory where the plots will be saved to.
The default is None, which will result in the plots being
saved to the directory the .dat file are located.

	alpha (float, optional) – The opacity of the overlayed hit plot. This should
be between 0 and 1, with 0 being invisible, and 1
being the default opacity. This is passed into
matplotlib.pyplot function.

	color (str, optional) – Allows for the specification of the color of the overlayed
hits. The default is ‘black’.

	window (tuple, optional) – Sets the start and stop frequencies of the plot, in MHz.
The input takes the form of a tuple: (start, stop). And
assumes that the start is less than the stop. The
resulting plot will range exactly between the start/stop
frequencies. The default is None, which will result in
a plot of the entire range of hits detected.

Plot Event Pipeline

Front-facing script to plot drifting, narrowband events in a set of generalized
cadences of ON-OFF radio SETI observations.

	
class turbo_seti.find_event.plot_event_pipeline.PathRecord(path_h5, tstart, source_name)

	Definition of an H5 path record

	
turbo_seti.find_event.plot_event_pipeline.plot_event_pipeline(event_csv_string, fils_list_string, user_validation=False, offset=0, filter_spec=None, sortby_tstart=True, plot_dir=None)

	This function calls plot_candidate_events() to
plot the events in an output .csv file generated by find_event_pipeline.py

	Parameters

	
	event_csv_string (str) – The string name of a .csv file that contains the
list of events at a given filter level, created as
output from find_event_pipeline.py. The
.csv should have a filename containing information
about its parameters, for example
“kepler1093b_0015_f2_snr10.csv”
Remember that the file was created with some cadence
(ex. ABACAD) and ensure that the cadence matches the
order of the files in fils_list_string

	fils_list_string (str) – The string name of a plaintext file ending in .lst
that contains the filenames of .fil files, each on a
new line, that corresponds to the cadence used to
create the .csv file used for event_csv_string.

	user_validation (bool, optional) – A True/False flag that, when set to True, asks if the
user wishes to continue with their input parameters
(and requires a ‘y’ or ‘n’ typed as confirmation)
before beginning to run the program. Recommended when
first learning the program, not recommended for
automated scripts.

	offset (int, optional) – The amount that the overdrawn “best guess” line from
the event parameters in the csv should be shifted from
its original position to enhance readability. Can be
set to 0 (default; draws line on top of estimated
event) or ‘auto’ (shifts line to the left by an auto-
calculated amount, with addition lines showing original
position).

	sortby_tstart (bool) – If True, the input file list is sorted by header.tstart.

Examples

>>> import plot_event_pipeline;
... plot_event_pipeline.plot_event_pipeline(event_csv_string, fils_list_string,
... user_validation=False, offset=0)

Plot Event

Backend script to plot drifting, narrowband events in a generalized cadence of
ON-OFF radio SETI observations. The main function contained in this file is
plot_candidate_events() uses the other helper functions
in this file (described below) to plot events from a turboSETI event .csv file.

	
turbo_seti.find_event.plot_event.make_waterfall_plots(fil_file_list, on_source_name, f_start, f_stop, drift_rate, f_mid, filter_level, source_name_list, offset=0, plot_dir=None, **kwargs)

	Makes waterfall plots of an event for an entire on-off cadence.

	Parameters

	
	fil_file_list (str) – List of filterbank files in the cadence.

	on_source_name (str) – Name of the on_source target.

	f_start (float) – Start frequency, in MHz.

	f_stop (float) – Stop frequency, in MHz.

	drift_rate (float) – Drift rate in Hz/s.

	f_mid (float) – <iddle frequency of the event, in MHz.

	filter_level (int) – Filter level (1, 2, or 3) that produced the event.

	source_name_list (list) – List of source names in the cadence, in order.

	bandwidth (int) – Width of the plot, incorporating drift info.

	kwargs (dict) – Keyword args to be passed to matplotlib imshow().

Notes

Makes a series of waterfall plots, to be read from top to bottom, displaying a full cadence
at the frequency of a recorded event from find_event. Calls plot_waterfall()

	
turbo_seti.find_event.plot_event.overlay_drift(f_event, f_start, f_stop, drift_rate, t_duration, offset=0, alpha=1, color='#cc0000')

	Creates a dashed red line at the recorded frequency and drift rate of
the plotted event - can overlay the signal exactly or be offset by
some amount (offset can be 0 or ‘auto’).

	
turbo_seti.find_event.plot_event.plot_candidate_events(candidate_event_dataframe, fil_file_list, filter_level, source_name_list, offset=0, plot_dir=None, **kwargs)

	Calls make_waterfall_plots() on each event in the input .csv file.

	Parameters

	
	candidate_event_dataframe (dict) – A pandas dataframe containing information
about a candidate event. The necessary data
includes the start and stop frequencies, the
drift rate, and the source name. To determine
the required variable names and formatting
conventions, see the output of
find_event_pipeline.

	fil_file_list (list) – A Python list that contains a series of
strings corresponding to the filenames of .fil
files, each on a new line, that corresponds to
the cadence used to create the .csv file used
for event_csv_string.

	filter_level (int) – A string indicating the filter level of the
cadence used to generate the
candidate_event_dataframe. Used only for
output file naming, convention is “f1”, “f2”,
or “f3”. Descriptions for the three levels of
filtering can be found in the documentation
for find_event.py

	source_name_list (list) – A Python list that contains a series of strings
corresponding to the source names of the
cadence in chronological (descending through
the plot panels) cadence.

	offset (int, optional) – The amount that the overdrawn “best guess”
line from the event parameters in the csv
should be shifted from its original position
to enhance readability. Can be set to 0
(default; draws line on top of estimated
event) or ‘auto’ (shifts line to the left by
an auto-calculated amount, with addition lines
showing original position).

	kwargs (dict) –

Examples

It is highly recommended that users interact with this program via the
front-facing plot_event_pipeline.py script. See the usage of that file in
its own documentation.

If you would like to run plot_candidate_events without calling
plot_event_pipeline.py, the usage is as follows:

>>> plot_event.plot_candidate_events(candidate_event_dataframe, fil_file_list,
... filter_level, source_name_list, offset=0)

	
turbo_seti.find_event.plot_event.plot_waterfall(wf, source_name, f_start=None, f_stop=None, **kwargs)

	Plot waterfall of data in a .fil or .h5 file.

	Parameters

	
	wf (blimpy.Waterfall object) – Waterfall object of an H5 or Filterbank file containing the dynamic spectrum data.

	source_name (str) – Name of the target.

	f_start (float) – Start frequency, in MHz.

	f_stop (float) – Stop frequency, in MHz.

	kwargs (dict) – Keyword args to be passed to matplotlib imshow().

Notes

Plot a single-panel waterfall plot (frequency vs. time vs. intensity)
for one of the on or off observations in the cadence of interest, at the
frequency of the expected event. Calls overlay_drift()

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 turbo_seti	

 	
 	
 turbo_seti.find_doppler.data_handler	

 	
 	
 turbo_seti.find_doppler.file_writers	

 	
 	
 turbo_seti.find_doppler.find_doppler	

 	
 	
 turbo_seti.find_doppler.helper_functions	

 	
 	
 turbo_seti.find_doppler.kernels	

 	
 	
 turbo_seti.find_doppler.kernels._taylor_tree._core_numba	

 	
 	
 turbo_seti.find_doppler.merge_dats_logs	

 	
 	
 turbo_seti.find_doppler.seti_event	

 	
 	
 turbo_seti.find_event.find_event	

 	
 	
 turbo_seti.find_event.find_event_pipeline	

 	
 	
 turbo_seti.find_event.plot_dat	

 	
 	
 turbo_seti.find_event.plot_event	

 	
 	
 turbo_seti.find_event.plot_event_pipeline	

 	
 	
 turbo_seti.find_event.run_pipelines	

Index

 B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | W

B

 	
 	bitrev() (in module turbo_seti.find_doppler.helper_functions)

C

 	
 	calc_freq_range() (in module turbo_seti.find_event.find_event)

 	chan_freq() (in module turbo_seti.find_doppler.helper_functions)

 	clean_event_stuff() (in module turbo_seti.find_event.run_pipelines)

 	close() (turbo_seti.find_doppler.data_handler.DATAH5 method)

 	(turbo_seti.find_doppler.file_writers.GeneralWriter method)

 	
 	close_enough() (in module turbo_seti.find_event.find_event_pipeline)

 	comp_stats() (in module turbo_seti.find_doppler.helper_functions)

 	count_text_lines() (in module turbo_seti.find_event.run_pipelines)

D

 	
 	DATAH5 (class in turbo_seti.find_doppler.data_handler)

 	
 	DATAHandle (class in turbo_seti.find_doppler.data_handler)

E

 	
 	end_search() (in module turbo_seti.find_event.find_event)

 	
 	exec_proc() (in module turbo_seti.find_doppler.seti_event)

 	execute_pipelines() (in module turbo_seti.find_event.run_pipelines)

F

 	
 	FileWriter (class in turbo_seti.find_doppler.file_writers)

 	find_event_pipeline() (in module turbo_seti.find_event.find_event_pipeline)

 	find_events() (in module turbo_seti.find_event.find_event)

 	
 	FindDoppler (class in turbo_seti.find_doppler.find_doppler)

 	FlipX() (in module turbo_seti.find_doppler.helper_functions)

 	flt (in module turbo_seti.find_doppler.kernels._taylor_tree._core_numba)

 	follow_event() (in module turbo_seti.find_event.find_event)

G

 	
 	GeneralWriter (class in turbo_seti.find_doppler.file_writers)

 	get_file_header() (in module turbo_seti.find_event.find_event_pipeline)

 	
 	get_info() (turbo_seti.find_doppler.data_handler.DATAHandle method)

 	get_spectrum() (turbo_seti.find_doppler.kernels.Kernels method)

H

 	
 	has_gpu() (turbo_seti.find_doppler.kernels.Kernels static method)

 	
 	hitsearch() (in module turbo_seti.find_doppler.find_doppler)

I

 	
 	info() (turbo_seti.find_doppler.file_writers.LogWriter method)

 	
 	is_open() (turbo_seti.find_doppler.file_writers.GeneralWriter method)

K

 	
 	Kernels (class in turbo_seti.find_doppler.kernels)

L

 	
 	last_logwriter() (turbo_seti.find_doppler.find_doppler.FindDoppler method)

 	load_data() (turbo_seti.find_doppler.data_handler.DATAH5 method)

 	
 	load_drift_indexes() (turbo_seti.find_doppler.data_handler.DATAH5 method)

 	load_the_data() (in module turbo_seti.find_doppler.find_doppler)

 	LogWriter (class in turbo_seti.find_doppler.file_writers)

M

 	
 	main() (in module turbo_seti.find_doppler.seti_event)

 	(in module turbo_seti.find_event.run_pipelines)

 	make_lists() (in module turbo_seti.find_event.run_pipelines)

 	
 	make_plot() (in module turbo_seti.find_event.plot_dat)

 	make_waterfall_plots() (in module turbo_seti.find_event.plot_event)

 	max_vals (class in turbo_seti.find_doppler.find_doppler)

 	merge_dats_logs() (in module turbo_seti.find_doppler.merge_dats_logs)

N

 	
 	not_yet_seen() (in module turbo_seti.find_event.find_event)

O

 	
 	open() (turbo_seti.find_doppler.file_writers.GeneralWriter method)

 	
 	overlay_drift() (in module turbo_seti.find_event.plot_event)

P

 	
 	PathRecord (class in turbo_seti.find_event.find_event_pipeline)

 	(class in turbo_seti.find_event.plot_event_pipeline)

 	plot_candidate_events() (in module turbo_seti.find_event.plot_event)

 	plot_dat() (in module turbo_seti.find_event.plot_dat)

 	
 	plot_event_pipeline() (in module turbo_seti.find_event.plot_event_pipeline)

 	plot_hit_candidate() (in module turbo_seti.find_event.plot_dat)

 	plot_waterfall() (in module turbo_seti.find_event.plot_event)

 	populate_tree() (in module turbo_seti.find_doppler.find_doppler)

R

 	
 	read_dat() (in module turbo_seti.find_event.find_event)

 	
 	report_header() (turbo_seti.find_doppler.file_writers.FileWriter method)

 	report_tophit() (turbo_seti.find_doppler.file_writers.FileWriter method)

S

 	
 	search() (turbo_seti.find_doppler.find_doppler.FindDoppler method)

 	
 	search_coarse_channel() (in module turbo_seti.find_doppler.find_doppler)

T

 	
 	tophitsearch() (in module turbo_seti.find_doppler.find_doppler)

 	turbo_seti.find_doppler.data_handler (module)

 	turbo_seti.find_doppler.file_writers (module)

 	turbo_seti.find_doppler.find_doppler (module)

 	turbo_seti.find_doppler.helper_functions (module)

 	turbo_seti.find_doppler.kernels (module)

 	turbo_seti.find_doppler.kernels._taylor_tree._core_numba (module)

 	
 	turbo_seti.find_doppler.merge_dats_logs (module)

 	turbo_seti.find_doppler.seti_event (module)

 	turbo_seti.find_event.find_event (module)

 	turbo_seti.find_event.find_event_pipeline (module)

 	turbo_seti.find_event.plot_dat (module)

 	turbo_seti.find_event.plot_event (module)

 	turbo_seti.find_event.plot_event_pipeline (module)

 	turbo_seti.find_event.run_pipelines (module)

W

 	
 	writable() (turbo_seti.find_doppler.file_writers.GeneralWriter method)

 	
 	write() (turbo_seti.find_doppler.file_writers.GeneralWriter method)

Welcome to turbo_seti’s documentation!

Contents:

	De-Doppler Search
	turboSETI Command Main Program

	Find Doppler

	Data Handler

	File Writers

	Kernels

	Helper Functions

	Merge DAT and LOG Files

	De-Doppler Analysis
	Authors

	plotSETI Command Main Program

	Find Event Pipeline

	Find Event

	Plot DAT

	Plot Event Pipeline

	Plot Event

Indices and tables

	Index

	Module Index

	Search Page

 nav.xhtml

 Table of Contents

 		
 Welcome to turbo_seti’s documentation!

 		
 De-Doppler Search

 		
 turboSETI Command Main Program

 		
 Find Doppler

 		
 turbo_seti doppler search module

 		
 Data Handler

 		
 File Writers

 		
 Kernels

 		
 Hitsearch

 		
 De-Doppler

 		
 Helper Functions

 		
 Merge DAT and LOG Files

 		
 De-Doppler Analysis

 		
 Authors

 		
 plotSETI Command Main Program

 		
 Find Event Pipeline

 		
 Find Event

 		
 Plot DAT

 		
 Plot Event Pipeline

 		
 Plot Event

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

